.. _global_fixedhypocenter:
###############
FixedHypocenter
###############
Locator for re-computing source time with fixed hypocenter
Description
===========
Mining-related events are useful as ground truth events (:cite:t:`bondár-2009a`)
because the epicentre and depth can be constrained by physical inspection.
Unless a local seismograph network with accurate timing also locates the event,
and that information is available, the origin time must be estimated in order
for the event to be useful as ground truth. Existing location algorithms in
|scname|, including :ref:`Hypo71 ` and :ref:`LOCSAT `
do not allow the determination of origin time given a set of arrivals and a
fixed hypocentre. There is a need, then, for a method of fixed hypocentre
origin time determination.
Objectives of this locator are:
* Inversion of arrival times of phase picks for source time fixing hypocenter location.
* Compatibility of the method of fixed-hypocentre origin time determination with
the practise of the Comprehensive Test Ban Treaty Organization (CTBTO).
* Adaptation of a procedure which is compatible with the other locators supported by |scname|.
* Adaptation of a procedure which can reproduce results of legacy locators currently
in use, such as GENLOC :cite:t:`pavlis-2004` and GRL, a
grid-based locator developed at the Canadian Hazards Information Service (CHIS).
The implementation of this locator by :term:`gempa GmbH` was initiated and has received
initial funding from :cite:t:`nrcan`.
Methodology
===========
Given the measured arrival times :math:`t_i^k` of phase :math:`k` at
station :math:`i`, most methods of earthquake hypocentre location involve
minimization of the weighted squared sum of the residuals. That is,
minimization of:
.. math::
|r_w|^2 = \sum_{i=1}^N {w_i^2 [ t_i^k - \tau - T_{model}^k(r_i,x) ]^2}
The residuals are computed by subtracting the expected arrival times
:math:`\tau - T_{model}^k(r_i,x)` based on a velocity model applied at the
coordinates of each station
:math:`r_i`.
Typically the weights can be a combination of the inverse of the
estimated pick uncertainty :math:`1/{\sigma}_i`, a distance term
:math:`d^k(\Delta)` and/or a residual weight term :math:`p(r_i)`.
Alternative weighting schemes can be applied but in this
implementation we weight by pick uncertainty alone: :math:`w_i=\frac{1}{{\sigma}_i}`.
In the general case, the model is a nonlinear function of its inputs, and there
is no analytic solution for the origin time and hypocenter that minimize the
norm. Typically, the solution is found iteratively, based on an initial guess
for the origin time and hypocenter. This is the normal procedure for an earthquake
without an a priori estimate of the hypocentral location.
When the hypocenter is in fact accurately constrained, the modeled travel time
is a constant, so we can project each phase arrival back to an equivalent origin
time
.. math ::
\tau_i^k = t_i^k - T_{model}^k (r_i,x)
so that we only have to find which minimizes:
.. math::
|r_w|^2 = \sum_{i=1}^{N}w_i^2 [\tau_i^k - \tau]^2
The residuals are minimized by:
.. math::
\tau = \frac{\sum_{i=1}^{N}w_i^2 (\tau_i^k)^2}{\sum_{i=1}^{N}w_i^2}.
Thus, the origin time is simply the weighted mean of the equivalent origin
times, according to the velocity model, associated with the arrivals.
The standard error of this estimate is:
.. math::
\sigma = \sqrt{\frac{\sum_{i=1}^{N}w_i^2 [\tau_i^k - \tau]^2}{\sum_{i=1}^{N}w_i^2}}.
The methodology for estimating error intervals and ellipses recommended for
standard processing at the CTBTO (:cite:t:`lee-1975`) is that of
:cite:t:`jordan-1981` and is implemented
in LOCSAT (:cite:t:`bratt-1988`).
Uncertainty is represented by a set of points :math:`x_e` around the final estimate
:math:`x_f` satisfying:
.. math::
\kappa_p^2 &= (x_e - x_f)^TC_m(x_e-x_f), \\
\kappa_p^2 &= Ms^2F_p(M,K+N-M), \\
s^2 &= \frac{Ks_K^2+|r_w|^2}{K+N-M}
where:
* :math:`C_m`: Covariance matrix, corresponding to the final hypocentre estimate :math:`x_f`.
* :math:`s^2`: Ratio of actual to assumed.
* :math:`\kappa_p^2`: The “confidence coefficient” at probability :math:`\rho`.
* :math:`F_p(m,n)`: Fisher-Snedecor quantile function (inverse cumulative F-distribution)
for and degrees of freedom of numerator and denominator sum of squares,
respectively, and probability.
* :math:`p`: Confidence level: the desired probability that the true epicentre should
fall within the uncertainty bounds.
* :math:`N`: Sum of all arrival time, azimuth or slowness estimates. Here, only
arrival times are considered for inversion.
* :math:`M`: Number of fitted parameters:
* 3: error ellipsoid
* 2: error ellipse
* 1: depth or time error bounds.
Here, :math:`M = 1` as we only invert for the time.
* :math:`s_K^2`: A prior estimate of the ratio of actual to assumed data variances; typically set to 1.
* :math:`K`: Number of degrees of freedom in prior estimate :math:`s_K^2`.
:math:`K` can be configured by :confval:`FixedHypocenter.degreesOfFreedom`.
* :math:`r_w`: Vector of weighted residuals.
Although this formulation is complex it is useful it because allows the analyst to
balance a priori and a posteriori estimates of the ratio of actual to assumed
data variances.
The covariance matrix in the general case is computed from the weighted sensitivity
matrix :math:`A_w`, the row-weighted matrix of partial derivatives of arrival
time with respect to the solution coordinates.
.. math::
C_m = A^T_wA_w
However, when origin time is the only coordinate, the partial derivatives with
respect to origin time are unity, the weighted sensitivity matrix is simply a
row vector of weights, and the time-time covariance
:math:`c_{tt}` is simply the sum of the squares of these weights.
.. math::
c_{tt} = \sum_{i=1}^{N}w_i^2
It is recommended that fixed-hypocentre origin time confidence intervals be
estimated using the method of :cite:t:`jordan-1981` for error ellipsoids,
that is, that the time error bounds be represented using
.. math::
\Delta t_p &= \sqrt{ \frac{\kappa_p^2}{c_{tt}} } \\
&= \sqrt{ \frac{F_p(1,K+N-1)}{K+N-1} \frac{Ks_K^2 + \sum_{i=1}^{N}w_i^2 [\tau_i^k-\tau]^2}{\sum_{i=1}^{N}w_i^2}}.
In addition to recording arrival weights and residuals, distances and azimuths,
and other details of origin quality, the details of a ground-truth-level (GT1)
fixed-hypocentre origin time estimate are recorded as:
* origin.time = :math:`\tau`
* origin.time_errors.uncertainty = :math:`\Delta t_p`
* origin.time_errors.confidence_level = :math:`100p`
* origin.quality.standard_error = :math:`\sigma`
* origin.quality.ground_truth_level = GT1
For the sake of reproducibility, a comment is added to every new :term:`origin`
reporting :math:`K`, :math:`s_K` and :math:`\kappa_p`.
Application
===========
#. Configure the parameters in the section *FixedHypocenter* of the global configuration.
#. When using in :ref:`scolv` the FixedHypocenter locator can be chose right away
from the available locators.
.. figure:: media/scolv-fixedhypocenter.png
:align: center
:width: 18cm
scolv Location tab with FixHypocenter selected for relocating.
#. Configure the module, e.g. :ref:`screloc` or :ref:`scolv`, which is to use FixedHypocenter:
* set the locator type / interface: "FixedHypocenter"
* if requested, set the profile as [interface]/[model], e.g.: LOCSAT/iasp91 or libtau/ak135
#. Run the module with FixedHypocenter
Origins created by the FixedHypocenter locator can be identified by the methodID
and the *confidence/description* comment of the origin paramters, e.g.: ::
...
false
true
FixedHypocenter
iasp91
...
Confidence coefficient: K-weighted ($K$=8, $s_K$=1 s), $\kappa_p$ = 1.6, $n_{eff}$ = 5.0
confidence/description
...
.. _global_fixedhypocenter_configuration:
Module Configuration
====================
.. note::
**FixedHypocenter.\***
*Locator parameters: FixedHypocenter*
.. confval:: FixedHypocenter.profiles
Default: ``LOCSAT/iasp91,LOCSAT/tab``
Type: *list:string*
Defines a list of available travel time tables. Each item
is a tuple separated by a slash with format \"[interface]\/[model]\".
Built\-in interfaces are \"LOCSAT\" and \"libtau\".
Other interfaces might be added via plugins. Please check their
documentation for the required interface name.
.. confval:: FixedHypocenter.usePickUncertainties
Default: ``false``
Type: *boolean*
Whether to use pick time uncertainties rather than a fixed
time error. If true, then the uncertainties are retrieved from
each individual pick object. If they are not defined, then the
default pick time uncertainty as defined by defaultTimeError
will be used instead.
.. confval:: FixedHypocenter.defaultTimeError
Default: ``1.0``
Type: *double*
Unit: *s*
The default pick time uncertainty if pick uncertainties are
not going to be used or if they are absent.
.. confval:: FixedHypocenter.degreesOfFreedom
Default: ``8``
Type: *int*
Number of degrees of freedom used for error estimate.
.. confval:: FixedHypocenter.confLevel
Default: ``0.9``
Type: *double*
Confidence level between 0.5 and 1.